Este año aprendimos mucho en mate 2, para muchos no es el mejor curso (la gran mayoria) es fácil pero complicado a la vez. Al principio todos renegaban por mate 2 y decian que mate 2 era el curso mas yuca de todos..pero conforme paso el tiempo..ERA PEOR! entonces nuestro profe: Daniel Yalta, busco la manera mas facil y a la vez laboriosa de cojerle cariño a este curso tan complicado y fue así como empezamos con el Blog, y con muchos trabajos de campo, reportes y experimentos. Nos veían a las 11 de la noche haciendo un trabajo que debiamos de presentar antes de las 12 de esa misma noche, era algo impresionante y realmente gracioso porque al final en verdad lo lográbamos y lo presentábamos. Y así fuimos cumpliendo con este curso. Pero lo mas bonito de todo este ultimo bimestre fue que todos estabamos tan entusiasmados con esto (ya que era un pase a no ir a verano) lo haciamos bien las primeras semanas, pero al final..nos ibamos olvidando. Vinieron un monton de momentos en mate 2 que fue el concurso del tablazo, experimentos, etc. Pero apesar de todo, fue una mejor tactica de enseñarnos geometria y algo de trigo porque al final, tu preguntabas: que tal mate 2? bien..esta fácil! y muchos en el examen final les parecio demasiado facil ya que era lo que habiamos hecho en clase. En fin, al igual que RM quien en nuestro salón fue el mismo profesor :) al principio era dificil pero poco a poco le cojias la manía y salia.
Con este fin de año escolar: MATE 2 Y RM, ximenita y yo queremos, bueno no queremos despedirnos de este blog porque realmente ha dejado anécdotas, nuestro grupo (vale resaltar :B) fue el que publico primero lo de trigonometria en el blog a la hora : 10:50 como fue? es un misterio :B pero fue muy bonito ganar almenos algo, pequeño..pero algo en este curso. Deseamos que el proximo año sea igual mate 2 o Rm porque es la manera mas didáctica de entrar en nuestras cabezas :) Y nada, ojala el proximo año sigamos con el blog..pero algo de todo el año o por bimestres,
hasta muy pronto (Sé que volveremos) ximenita y alejandra :)
martes, 14 de diciembre de 2010
jueves, 25 de noviembre de 2010
la trigonometria
La Trigonometría es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Los babilonios y los egipcios (hace más de 3000 años) fueron los primeros en utilizar los ángulos de un triángulo y las razones trigonométricas para efectuar medidas en agricultura y para la construcción de pirámides. También se desarrollo a partir de los primeros esfuerzos hechos para avanzar en el estudio de la astronomía mediante la predicción de las rutas y posiciones de los cuerpos celestes y para mejorar la exactitud en la navegación y en el calculo del tiempo y los calendarios.
El estudio de la trigonometría pasó después a Grecia, en donde se destaca el matemático y astrónomo Griego Hiparco, por haber sido uno de los principales desarrolladores de la Trigonometría. Las tablas de “cuerdas” que construyo fueron las precursoras de las tablas de las funciones trigonométricas de la actualidad.
Desde Grecia, la trigonometría pasó a la India y Arabia donde era utilizada en la Astronomía. Y desde Arabia se difundió por Europa, donde finalmente se separa de la Astronomía para convertirse en una rama independiente que hace parte de la matemática.
Es así, como en este trabajo, se expondrá la historia y desarrollo de la trigonometría y de acuerdo a esto, fechas, épocas y principales precursores o personajes que lideraron el proceso o dieron los pasos fundamentales para el posterior desarrollo de esta importante rama de las matemáticas. Junto con esto, una biografía de cada uno de los exponentes y una línea del tiempo con personajes y descubrimientos para una mayor comprensión.
HISTORIA DE LA TRIGONOMETRÍA
La historia de la trigonometría comienza con los Babilonios y los Egipcios. Estos últimos establecieron la medida de los ángulos en grados, minutos y segundos. Sin embargo, en los tiempos de la Grecia clásica, en el siglo II a.C. el astrónomo Hiparco de Nicea construyó una tabla de cuerdas para resolver triángulos. Comenzó con un ángulo de 71° y yendo hasta 180° con incrementos de 71°, la tabla daba la longitud de la cuerda delimitada por los lados del ángulo central dado que corta a una circunferencia de radio r. No se sabe el valor que Hiparco utilizó para r.
300 años después, el astrónomo Tolomeo utilizó r = 60, pues los griegos adoptaron el sistema numérico (base 60) de los babilonios.
Durante muchos siglos, la trigonometría de Tolomeo fue la introducción básica para los astrónomos. El libro de astronomía el Almagesto, escrito por él, también tenía una tabla de cuerdas junto con la explicación de su método para compilarla, y a lo largo del libro dio ejemplos de cómo utilizar la tabla para calcular los elementos desconocidos de un triángulo a partir de los conocidos. El teorema de Menelao utilizado para resolver triángulos esféricos fue autoría de Tolomeo.
Al mismo tiempo, los astrónomos de la India habían desarrollado también un sistema trigonométrico basado en la función seno en vez de cuerdas como los griegos. Esta función seno, era la longitud del lado opuesto a un ángulo en un triángulo rectángulo de hipotenusa dada. Los matemáticos indios utilizaron diversos valores para ésta en sus tablas.
A finales del siglo VIII los astrónomos Árabes trabajaron con la función seno y a finales del siglo X ya habían completado la función seno y las otras cinco funciones. También descubrieron y demostraron teoremas fundamentales de la trigonometría tanto para triángulos planos como esféricos. Los matemáticos sugirieron el uso del valor r = 1 en vez de r = 60, y esto dio lugar a los valores modernos de las funciones trigonométricas
El occidente latino se familiarizó con la trigonometría Árabe a través de traducciones de libros de astronomía arábigos, que comenzaron a aparecer en el siglo XII. El primer trabajo importante en esta materia en Europa fue escrito por el matemático y astrónomo alemán Johann Müller, llamado Regiomontano.
A principios del siglo XVII, el matemático Jhon Napier inventó los logaritmos y gracias a esto los cálculos trigonométricos recibieron un gran empuje.
A mediados del siglo XVII Isaac Newton inventó el cálculo diferencial e integral. Uno de los fundamentos del trabajo de Newton fue la representación de muchas funciones matemáticas utilizando series infinitas de potencias de la variable x. Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.
Por último, en el siglo XVIII, el matemático Leonhard Euler demostró que las propiedades de la trigonometría eran producto de la aritmética de los números complejos y además definió las funciones trigonométricas utilizando expresiones con exponenciales de números complejos.
Quién era Hiparco de Nicea
(c. 190-120 a.C), Hiparco de Nicea fue astrónomo griego, el más importante de su época. Nació en Nicea, Bitinia (hoy Iznik, Turquía). Fue extremadamente preciso en sus investigaciones, de las que conocemos parte por comentarse en el tratado científico Almagesto del astrónomo alejandrino Tolomeo, sobre quien ejerció gran influencia. Comparando sus estudios sobre el cielo con los de los primeros astrónomos, Hiparco descubrió la precisión de los equinoccios .Sus cálculos del año tropical, duración del año determinada por las estaciones, tenían un margen de error de 6,5 minutos con respecto a las mediciones modernas. También inventó un método para localizar posiciones geográficas por medio de latitudes y longitudes. Catalogó, hizo gráficos y calculó el brillo de unas mil estrellas. También recopiló una tabla de cuerdas trigonométricas que fueron la base de la trigonometría moderna.
Quién era Tolomeo
(c. 100-c. 170), Claudio Tolomeo, fue un astrónomo y matemático que dominó el pensamiento científico hasta el siglo XVI por sus teorías y explicaciones astronómicas. Posiblemente nació en Grecia, pero su verdadero nombre, Claudius Ptolemaeus, dice lo que realmente se sabe de él: 'Ptolemaeus' indica que vivía en Egipto y 'Claudius' que era ciudadano romano.
Contribuyó a las matemáticas con sus estudios en trigonometría y aplicó sus teorías a la construcción de astrolabios y relojes de sol.
Quién era Euler.
(1707-1783), Leonhard Euler fue un matemático suizo, sus trabajos se centraron en el campo de las matemáticas puras, Euler nació en Basilea y se licenció a los 16 años. En 1727, fue miembro del profesorado de la Academia de Ciencias de San Petersburgo. Fue nombrado catedrático de física en 1730 y de matemáticas en 1733. En 1741 fue profesor de matemáticas en la Academia de Ciencias de Berlín. Euler regresó a San Petersburgo en 1766, donde permaneció hasta su muerte. Aunque tuvo una pérdida parcial de visión antes de cumplir 30 años y una ceguera casi total al final de su vida, produjo obras matemáticas importantes, como reseñas matemáticas y científicas.
En su Introducción al análisis de los infinitos (1748), trató la trigonometría y la geometría analítica. Entre sus obras se encuentran Instituciones del cálculo diferencial (1755), Instituciones del cálculo integral (1768-1770) e Introducción al álgebra (1770).
Quien era John Napier
(1550-1617), Napier fue un matemático escocés nacido en Merchiston, cerca de Edimburgo. Estudió en la Universidad de San Andrés y allí fue seguidor del movimiento de la Reforma en Escocia, después de unos años tomó parte en los asuntos políticos de los protestantes y es autor de la primera interpretación importante en Escocia de la Biblia.
Principalmente es conocido por introducir el primer sistema de logaritmos, (1614). Además, fue uno de los primeros, si no el primero, en utilizar la moderna notación decimal para expresar fracciones decimales de una forma sistemática.
Así pues, se pretendía clarificar la historia de la trigonometría para así poder tener una visión mucho más amplia de su desarrollo y de igual manera un mayor entendimiento acerca del tema.
Fue así, como la trigonometría avanzó, hasta convertirse en una rama independiente que hace parte de la matemática. Pero esto no quiere decir que los avances, descubrimientos e investigaciones no hayan continuado. Es decir, que el estudio de la trigonometría actualmente, no solo se limita a las relaciones entre los elementos de un triangulo y a sus aplicaciones. Hoy día, la trigonometría, es parte de la matemática y se emplea en muchos campos del conocimiento, tanto teóricos como prácticos, e interviene en toda clase de investigaciones geométricas y algebraicas en las cuales aparecen las llamadas funciones trigonométricas, de gran aplicación además en la electricidad, termodinámica, investigación atómica etc..
No es de sobra aclarar esto, ya que la palabra trigonometría se deriva de dos raíces griegas: trigon, que significa triángulo, y metra, que significa medida, entonces, se tiende a creer su aplicación solo se limita o refiere a las varias relaciones entre los ángulos de un triángulo y sus lados.
Sin embargo, el hombre la ha empleado para calcular áreas, distancias, trayectorias y en el estudio de la mecánica etc., con base en la resolución de triángulos.
La trigonometría, que al principio aparece como parte de la geometría que se ocupa de formular relaciones entre las medidas angulares y las longitudes de los lados de un triangulo y que surgió para resolver inicialmente problemas de exactitud en la navegación y en el calculo del tiempo y los calendarios por parte de los griegos, posteriormente se ha convertido también el fundamento de los cálculos astronómicos. Por ejemplo, la solución del llamado triángulo astronómico se utiliza para encontrar la latitud y longitud de un punto, la hora del día, la posición de una estrella y otras magnitudes.
Así pues, esta misma trigonometría se dividió en dos ramas fundamentales, que son la trigonometría plana, que se ocupa de figuras contenidas en un plano, y la trigonometría esférica, que se usa sobre todo en navegación y astronomía y estudia triángulos esféricos, es decir, triángulos que forman parte de la superficie de una esfera
ALEJANDRA RAMIREZ
Trigonometría
La trigonometría es una rama de la matemática, cuyo significado etimológico es "la medición de los triángulos". Se deriva del vocablo griego τριγωνο "triángulo" + μετρον "medida".[1]
La trigonometría es la rama de las matemáticas que estudia las relaciones entre los ángulos y los lados de los triángulos. Para esto se vale de las razones trigonométricas, las cuales son utilizadas frecuentemente en cálculos técnicos.
En términos generales, la trigonometría es el estudio de las funciones seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el caso del estudio de las esferas en la geometría del espacio.
Posee numerosas aplicaciones: las técnicas de triangulación, por ejemplo, son usadas en astronomía para medir distancias a estrellas próximas, en la medición de distancias entre puntos geográficos, y en sistemas de navegación por satélites.
Ximena Carbajal
La trigonometría es la rama de las matemáticas que estudia las relaciones entre los ángulos y los lados de los triángulos. Para esto se vale de las razones trigonométricas, las cuales son utilizadas frecuentemente en cálculos técnicos.
En términos generales, la trigonometría es el estudio de las funciones seno, coseno; tangente, cotangente; secante y cosecante. Interviene directa o indirectamente en las demás ramas de la matemática y se aplica en todos aquellos ámbitos donde se requieren medidas de precisión. La trigonometría se aplica a otras ramas de la geometría, como es el caso del estudio de las esferas en la geometría del espacio.
Posee numerosas aplicaciones: las técnicas de triangulación, por ejemplo, son usadas en astronomía para medir distancias a estrellas próximas, en la medición de distancias entre puntos geográficos, y en sistemas de navegación por satélites.
Ximena Carbajal
martes, 23 de noviembre de 2010
Moldes de solidos geometricos :B
Aquí tenemos los moldes o plantillas de solidos geometricos pues si los quieren descargar para el trabajo de mate 2 :)
Cono regular
Prisma regular
Prisma hexagonal regular
Piramide truncada
Cono truncado
Piramide cuadrangular
Pirámide
Conito truncado :)
El cono truncado o tronco de cono es el cuerpo geométrico que resulta al cortar un cono por un plano paralelo a la base y separar la parte que contiene al vértice.
Un tronco de cono recto, de bases paralelas, es la porción de cono comprendido entre dos planos que lo cortan y son perpendiculares a su eje. Queda determinado por los radios de las bases, R y r, la altura, h, y la generatriz, g, entre las cuales se da la siguiente relación:
El area lateral de un tronco de cono se puede hallar resolviendo la siguiente ecuación:
El area de un tronco de cono (el área lateral más el área de las circunferencias superior e inferior) se puede hallar mediante la fórmula:
El volumen de un tronco de cono se puede hallar utilizando la siguiente fórmula:
Cono truncado
Cono Truncado
Como todos sabemos, la sociedad ha tenido avances increibles a lo largo de los años, antes las construcciones no eran tan impresionantes como las de ahora.
Hoy en dia, los grandes arquitectos se esfuerzan por crear y construir grandes edificios con formas geométricas extraordinarias, como ahora es el caso del cono truncado :). Ahora les mostraré una foto de una construcción con esa forma; pero no sin antes poner la definicion de esta figura.
Hoy en dia, los grandes arquitectos se esfuerzan por crear y construir grandes edificios con formas geométricas extraordinarias, como ahora es el caso del cono truncado :). Ahora les mostraré una foto de una construcción con esa forma; pero no sin antes poner la definicion de esta figura.
Definición:
El cono truncado o tronco de cono es el cuerpo geométrico que resulta al cortar un cono por un plano paralelo a la base y separar la parte que contiene al vértice.
Cono Truncado en la vida real
domingo, 21 de noviembre de 2010
Cilindros
El cilindro
Un cilindro,
en geometría,
es la superficie formada por los puntos situados
a una distancia fija de una línea recta
dada, el eje del cilindro. Como
superficie de revolución, se obtiene mediante el giro de una recta alrededor de
otra fija llamada eje de revolución.
El sólido
encerrado por esta superficie y por dos planos perpendiculares al eje también
se llama cilindro.
CONCEPTO
|
DEFINICIÓN
|
Eje |
Es el lado fijo alrededor del cual
gira el rectángulo..
|
Base |
Son los círculos que engendran los lados perpendiculares al eje.
|
Altura |
Es la distancia
entre las dos bases.
|
Generatriz |
Es el lado opuesto al eje, y es el lado que engendra el cilindro.
La generatriz del cilindro es igual a la altura. h = g |
Ahora les mostraré algunas que cosas cilindricas que usamos en nuestro día a día :D
Velas |
Pilas |
Vaso |
Canastas |
miércoles, 10 de noviembre de 2010
Las esferas del sistema solar :)
Nuestro universo es tan misterioso y a la vez increíble, pues, aunque no lo creamos los planetas tienen la forma de esferas, es tan fantástica su estructura esférica que da curiosidad de pensar como se formo todo este sistema que nos da a conocer como, ahora, 8 esferas con nombres propios dan una vuelta elíptica a una esfera gigante llamada Sol, y una de las esferas que da vuelta a esta enorme esfera es la Tierra, el lugar donde habitamos; es decir, que vivimos dentro de un solido geométrico :)
martes, 2 de noviembre de 2010
Figuras geométricas hechas realidad :)
Pirámides Azteca
En esta imagen podemos ver la base es un poligono y
empieza a acender con lados triangulares hasta llegar a la punta que termina con una contruccion
rectangular.
|
Cúpulas Islámicas La cúpula es un elemento arquitectónico que se utiliza para cubrir un espacio de planta circular, cuadrada, poligonal o elíptica, mediante arcos de perfil semicircular, parabólico u ovoidal, rotados respecto de un punto central de simetría. |
Pirmámides Egipcias Pirámide regular es un sólido que tiene por base un polígono y cuyas caras son triángulos que se reúnen en un mismo punto llamado vértice. |
Hotel Burj al arab - 7 estrellasEn esta imagen podemos ver comoe se hotel tiene una
forma muy especial. Podría decirse que tiene forma de parabólica y su centro es circular. |
Ximena Carbajal
jueves, 28 de octubre de 2010
Para que pienses ;)
El salario de Tomasito!
VAMOOOS RESUELVANLO :)
Tomás llegó al pueblo con $50 en el bolsillo, y salió de él por la noche con $150. Compró un sombrero en una tienda y algunas manzanas en el Mercado, y luego fue al oculista a revisarse la vista.
Tomás cobra su salario todos los martes, con cheques. Los bancos del pueblo solo abren los martes, jueves y sábados.
El oculista no trabaja los sábados, y el mercado cierra los martes y viernes.¿Qué día fue Tomás al pueblo?
Tomás cobra su salario todos los martes, con cheques. Los bancos del pueblo solo abren los martes, jueves y sábados.
El oculista no trabaja los sábados, y el mercado cierra los martes y viernes.¿Qué día fue Tomás al pueblo?
VAMOOOS RESUELVANLO :)
Alejandra Ramírez
martes, 26 de octubre de 2010
Sólidos geométricos y poliedros
CONCEPTO
|
DEFINICIÓN
|
ARISTA
|
Segmento donde se
encuentran dos caras de un sólido.
|
VÉRTICE
|
Punto de intersección de
dos o más lados (caras).
|
BASES
|
Son los lados inferiores de
un sólido
|
POLÍGONO
|
Figura cerrada formada por
tres o más segmentos de recta.
|
SÓLIDOS
|
Figuras del espacio que
tienen tres dimensiones (largo, ancho, alto).
|
PRISMAS
|
Sólido con dos bases, las
cuales son regiones poligonales y congruentes. Sus caras son
figuras planas.
|
PIRÁMIDE
|
Sólido con una sola base
poligonal, cuyas caras son todas triangulares y se encuentran en un solo
punto.
|
CILINDRO
|
Sólido cuyas bases son dos
círculos paralelos y congruentes.
|
CONO
|
Sólido con una sola base
circular y un vértice.
|
ESFERA
|
Sólido cuyos puntos se encuentran a la misma distancia de su centro. |
POLIEDRO
|
Son las figuras del espacio
cuyas superficies (caras) son todas planas y congruentes.
|
Ximena Carbajal
Figuras geométricas formadas por sonidos
En este video podemos apreciar como se forman diversas figuras geometricas con polvo mediante sonidos, el ruido en ocasiones es un poco molesto, pero vale la pena verlo ;)
Ximena Carbajal
Curiosidades
SABÍAS QUE ...
1. Alexis Lemaire posee el récord mundial de cálculo mental por sacar la 13ª raíz entera de un número de 100 dígitos y de un número de 200 dígitos.
Él es un francés de 27 años y es poseedor de una mente prodigiosa como pocas, calculó la raíz decimotercera de un número de 200 dígitos en sólo 70 segundos.
2.Se ha insinuado con bastante frecuencia que el teorema de Pitágoras no es realemente de él. La opinión más generalizada es que un miembro de su escuela formuló por primera vez el teorema en una época muy posterior. Pero por el mismo tiempo que vivió Pitágoras.
Un matemático chino de nombre desconocido debió de haber llegado a la misma conclusión. Esto se halló en un libro matemático-filosófico, que presenta dibujado, sin ningún género de dudas, un triángulo pitagórico con sus correspondientes relaciones.
3. Las dos rayas = que indican igualdad las empezó a utilizar un matemático inglés llamado Robert Recorde que vivió hace más de cuatrocientos años. En uno de sus libros cuenta que eligió ese signo porque “dos cosas no pueden ser más iguales que dos rectas paralelas” .
4. El símbolo de raíz se empezó a usar en 1525 y apareció por primera vez en un libro alemán de álgebra. Antes, para indicar la raíz de un número se escribía “raíz de …”. Luego, para abreviar, se empezó a poner “r”. Pero si el número era largo, el trazo horizontal de la “r” se alargaba hasta abarcar todas las cifras. Así nació el símbolo de la raíz, como una “r” mal hecha.
Ximena Carbajal
domingo, 24 de octubre de 2010
¿Quienes somos?
Somos alumnas del 4 grado E de secundaria y acá les presentaremos una serie de ideas, problemas y curisosidades que estamos seguras que te gustarán.
La matemática es una actividad vital para el hombre y joven moderno, si quiere llegar a comprender y dominar el mundo en que vive. La matemática, como una expresión de la mente humana, refleja la voluntad activa, la razón contemplativa y el deseo de perfección. Sus elementos básicos son lógica e intuición, análisis y construcción, generalidad y particularidad.
La matemática es una actividad vital para el hombre y joven moderno, si quiere llegar a comprender y dominar el mundo en que vive. La matemática, como una expresión de la mente humana, refleja la voluntad activa, la razón contemplativa y el deseo de perfección. Sus elementos básicos son lógica e intuición, análisis y construcción, generalidad y particularidad.
A través de este humilde trabajo, Ximena Carbajal y Alejandra Ramírez queremos colaborar y orientar a jóvenes como nosotras para que vean las matemáticas desde un punto de vista geométrico e ingenioso reflejados en la vida cotidiana.
En este Blog podrás observar diversos temas de geometría y una pisca de razonamiento matemático, pues este es importante para poder encontrarle un sentido a lo controversial y lo aplicativa que es la geometría.
Esperamos que los temas que presentemos sean de su completo agrado.
Suscribirse a:
Entradas (Atom)